解析式

f(x)=(1+x)1/xf(x)=\left( 1+x \right) ^{1/x}f(x)=(1+1x)xf(x)=\left( 1+\dfrac{1}{x} \right) ^x

图像

图像
变化过程

极限

limx0(1+x)1/x=e\lim_{x\to0}\left( 1+x \right) ^{1/x}=e

limx+(1+x)1/x=1\lim_{x\to+\infty}\left( 1+x \right) ^{1/x}=1

limx0+(1+1x)x=1\lim_{x\to0^+}\left( 1+\dfrac{1}{x} \right) ^x=1

limx+(1+1x)x=e\lim_{x\to+\infty}\left( 1+\dfrac{1}{x} \right) ^x=e

证明 f(n)=(1+1n)nf(n)=\left( 1+\dfrac{1}{n} \right) ^n 数列递减

f(n)n+1=1(1+1n)(1+1n)(1+1n)n+1<n+1+1n+1=1+1n+1\begin{aligned} \sqrt[n+1]{f(n)}&=\sqrt[n+1]{1\left( 1+\dfrac{1}{n} \right)\left( 1+\dfrac{1}{n} \right)\cdots\left( 1+\dfrac{1}{n} \right)}\\ &<\dfrac{n+1+1}{n+1}\\ &=1+\dfrac{1}{n+1} \end{aligned}
    f(n)<(1+1n+1)n+1=f(n+1)\iff f(n)<\left( 1+\dfrac{1}{n+1} \right) ^{n+1}=f(n+1)